Deficiency of niemann-pick type C-1 protein impairs release of human immunodeficiency virus type 1 and results in Gag accumulation in late endosomal/lysosomal compartments.

نویسندگان

  • Yuyang Tang
  • Ihid Carneiro Leao
  • Ebony M Coleman
  • Robin Shepard Broughton
  • James E K Hildreth
چکیده

Human immunodeficiency virus type 1 (HIV-1) relies on cholesterol-laden lipid raft membrane microdomains for entry into and egress out of susceptible cells. In the present study, we examine the need for intracellular cholesterol trafficking pathways with respect to HIV-1 biogenesis using Niemann-Pick type C-1 (NPC1)-deficient (NPCD) cells, wherein these pathways are severely compromised, causing massive accumulation of cholesterol in late endosomal/lysosomal (LE/L) compartments. We have found that induction of an NPC disease-like phenotype through treatment of various cell types with the commonly used hydrophobic amine drug U18666A resulted in profound suppression of HIV-1 release. Further, NPCD Epstein-Barr virus-transformed B lymphocytes and fibroblasts from patients with NPC disease infected with a CD4-independent strain of HIV-1 or transfected with an HIV-1 proviral clone, respectively, replicated HIV-1 poorly compared to normal cells. Infection of the NPCD fibroblasts with a vesicular stomatitis virus G-pseudotyped strain of HIV-1 produced similar results, suggesting a postentry block to HIV-1 replication in these cells. Examination of these cells using confocal microscopy showed an accumulation and stabilization of Gag in LE/L compartments. Additionally, normal HIV-1 production could be restored in NPCD cells upon expression of a functional NPC1 protein, and overexpression of NPC1 increased HIV-1 release. Taken together, our findings demonstrate that intact intracellular cholesterol trafficking pathways mediated by NPC1 are needed for efficient HIV-1 production.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exosome secretion ameliorates lysosomal storage of cholesterol in Niemann-Pick type C disease.

Niemann-Pick type C1 disease is an autosomal-recessive lysosomal storage disorder. Loss of function of the npc1 gene leads to abnormal accumulation of free cholesterol and sphingolipids within the late endosomal and lysosomal compartments resulting in progressive neurodegeneration and dysmyelination. Here, we show that oligodendroglial cells secrete cholesterol by exosomes when challenged with ...

متن کامل

The subcellular localization of the Niemann-Pick Type C proteins depends on the adaptor complex AP-3.

Niemann-Pick Type C (NP-C) disease, caused by mutations in either human NPC1 (hNPC1) or human NPC2 (hNPC2), is characterized by the accumulation of unesterified cholesterol in late endosomes. Although it is known that the NP-C proteins are targeted to late endosomal/lysosomal compartments, their delivery mechanisms have not been fully elucidated. To identify mechanisms regulating NP-C protein l...

متن کامل

Mobilization of late-endosomal cholesterol is inhibited by Rab guanine nucleotide dissociation inhibitor

Cholesterol entering cells in low-density lipoproteins (LDL) via receptor-mediated endocytosis is transported to organelles of the late endocytic pathway for degradation of the lipoprotein particles. The fate of the free cholesterol released remains poorly understood, however. Recent observations suggest that late-endosomal cholesterol sequestration is regulated by the dynamics of lysobisphosph...

متن کامل

Aberrant Promoter Methylation Profile of Niemann-Pick Type C1 Gene in Cardiovascular Disease

Background: The protein of Niemann-pick type C1 (NPC1) gene promotes the egress of cholesterol from late endosomes and lysosomes to other cellular compartments and contributes to a process known as reverse cholesterol transport. This study aimed to examine whether promoter methylation of NPC1 is associated with risk of cardiovascular disease (CVD). Methods: Fifty CVD patients and 50 healthy sub...

متن کامل

Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane.

In mammalian cells, cholesterol is thought to associate with sphingolipids to form lateral membrane domains termed rafts. Increasing evidence suggests that rafts regulate protein interactions, for example, during signalling, intracellular transport and host-pathogen interactions. Rafts are present in cholesterol-sphingolipid-enriched membranes, including early and recycling endosomes, but wheth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 83 16  شماره 

صفحات  -

تاریخ انتشار 2009